The welfare cost of energy insecurity

Baltasar Manzano (Universidade de Vigo) Luis Rey (bc3)

IEW 2013

INTRODUCTION

- The 1973-1974 oil crisis revealed the vulnerability of developed economies to oil price shocks.
- Increasing uncertainty in energy markets makes energy security an important objective of energy policy.
- Together with efficiency and sustainability, the EU includes energy security as one of the three pillars of its energy policy (European Commission (EC) 2008).
- Despite its importance, there is no much information on the (macro)economic impact of energy insecurity.

LITERATURE

- Definition:
 - IEA: the uninterrupted physical availability at a price which is affordable.
 - EU: physical (disruptions), economic (price volatility), social and environmental risks.
 - Bohi and Toman (1996): the loss of welfare resulting from a change in the price or physical availability of energy.
- Measurement:
 - Scheepers et al (2007), Supply/Demand Index.
 - IEA Model of Short Term Energy Security (MOSES).
 - Variables: relative level of imports, diversification of supply sources...

GOAL and FRAMEWORK

- The goal of the paper is to quantify the welfare cost of energy insecurity in a macroeconomic model.
- We relate energy insecurity with energy price volatility:
 - In a perfect market, prices reflect all possible events and risks (Kilian, 2009).
 - Energy insecurity is not caused by high prices, but volatility and uncertainty.
- The paper is related to two strands of the literature:
 - Energy price shocks: Kim and Loungani (1992), Rotemberg and Woodford (1996), Finn (2000).
 - The welfare cost of business cycles: Lucas (1987).

THE MODEL

- We use a Dynamic Stochastic General Equilibrium model.
- The model consists of a representative household and a firm.
- Energy is a consumption good for households and a production input for firms.
- Energy is imported from abroad at an exogenous price.
- There is perfect competition in the model.

1. Households

$$Max \quad E_0 \sum_{t=0}^{\infty} U(c_t, n_t, e_t^h)$$

s.t.: $c_t + k_{t+1} - (1 - \delta)k_t + p_t e_t^h = w_t n_t + r_t k_t$

F.O.C:

$$\begin{split} & \frac{U_{e_{t}^{h}}}{U_{c_{t}}} = p_{t} \\ & \frac{-U_{n_{t}}}{U_{c_{t}}} = w_{t} \\ & U_{c_{t}} = \beta E_{t} U_{c_{t+1}} \left\{ 1 - \delta + r_{t+1} \right\} \\ & c_{t} + k_{t+1} - (1 - \delta) k_{t} + p_{t} e_{t}^{h} = w_{t} n_{t} + r_{t} k_{t} \end{split}$$

2. The firm maximizes profits:

Max
$$F(n_t, k_t, e_t^f) - w_t n_t - r_t k_t - p_t e_t^f$$

F.O.C:

$$w_t = F_{n_t}; \quad r_t = F_{k_t}; \quad p_t = F_{e_t^f}$$

3. The relative energy price is exogenous:

$$\ln p_t = (1 - \rho) \ln p_{ss} + \rho \ln p_{t-1} + \varepsilon_t \qquad \varepsilon_t \sim N(0, \sigma_p^2)$$

4. Markets clear:

$$c_t + k_{t+1} - (1 - \delta)k_t + p_t(e_t^h + e_t^h) = F(n_t, k_t, e_t^f)$$

We focus on the competitive equilibrium of the economy

CALIBRATION

- We employ numerical methods to obtain a solution.
- The parameters are chosen to reproduce the main variables of the Spanish economy.
- We use standard values for key parameters of the model: the relative risk aversion, the elasticity of substitution between energy and non-energy consumption, the elasticity of substitution between energy and capital.
- We use oil prices rather than energy prices because (1) explain most of volatility and (2) oil and gas account for more than 75% of Spanish energy consumption.

$$U(A_t, n_t) = \frac{\left[A_t^{1-\mu} \left(1 - n_t\right)^{\mu}\right]^{\sigma}}{\sigma}$$
$$A_t(c_t, n_t, e_t^h) = \left[(1 - \gamma)c_t^{\alpha} + \gamma e_t^{h\alpha}\right]^{1/\alpha}$$

 $1/(1-\alpha)$: elasticity of substitution between energy and non-energy consumption

$$F(n_{t},k_{t},e_{t}^{f}) = n_{t}^{\theta} \left[(1-a)k_{t}^{-\nu} + ae_{t}^{f-\nu} \right]^{-\frac{1-\theta}{\nu}}$$

 $1/(1-\nu)$: elasticity of substitution between energy and capital

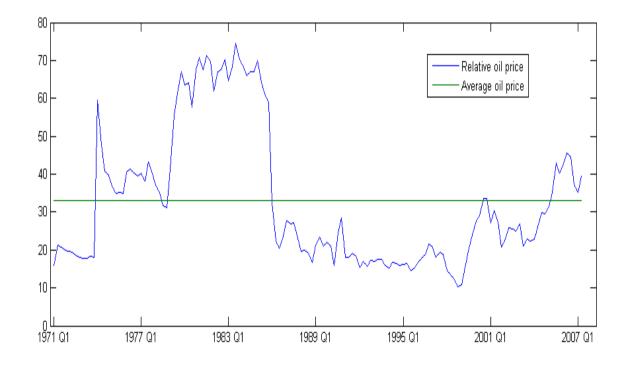

CALIBRATION

Table 1: Parameter values

Preferences		
Subjective discount factor	β	0.99
Energy consumption share	γ	0.036
Elasticity of substitution between energy and non-energy consumption	1/(1-α)	0.85
Preference for leisure	μ	2/3
Risk aversion	σ	-1
Technology		
Labor share	θ	0.64
Rate of depreciation	δ	0.025
Elasticity of substitution between energy and	1/(1+v)	0.76
capital		
Prices		
Persistence	ρ	0.95
Standard deviation	σ_p	0.18

Computing the Welfare cost of Energy Insecurity

Relative oil price (€2000)

$$U(c_{SS}(1-x), n_{SS}, e_{SS}^{h}) = E\left[U(c_{t}, n_{t}, e_{t}^{h})\right]$$
$$WC = x \frac{c_{SS}}{y_{SS}}$$

where:

$$\begin{split} E[U(c_t, eh_t, n_t)] \\ &= U(c_{ss}, eh_{ss}, n_{ss}) + \left(\frac{\partial U}{\partial c_t} \middle| c_{ss} \frac{\partial U}{\partial eh_t} \middle| eh_{ss} \frac{\partial U}{\partial n_t} \middle| n_{ss} \right) E \begin{pmatrix} c_t - c_{ss} \\ eh_t - eh_{ss} \\ n_t - n_{ss} \end{pmatrix} \\ &+ \frac{1}{2} \left(\frac{\partial^2 U}{\partial^2 c_t^2} \middle| c_{ss} \frac{\partial^2 U}{\partial^2 eh_t^2} \middle| eh_{ss} \frac{\partial^2 U}{\partial^2 n_t^2} \middle| n_{ss} \right) E \begin{pmatrix} (c_t - c_{ss})^2 \\ (eh_t - eh_{ss})^2 \\ (n_t - n_{ss})^2 \end{pmatrix} \end{split}$$

RESULTS

	Benchmark	γ=0
	model	
σ=-1	0.84%	0.026%
•	0.000/	0.0000/
σ=0	0.83%	0.023%
σ=-5	0.91%	0.042%
1/(1-α)=0.5	1.59%	-
1/(1-α)=1	0.65%	-
1/(1+v)=0.5	1.47%	0.50%
±/(±·v)=0.5	1.77/0	0.3070
1/(1+v)=1	0.77%	0.001%

- The welfare cost is large even in a competitive framework (0.84% of GDP in terms of consumption.
- Risk aversion has only slight effects on the estimation of the welfare cost.
- The elasticity of substitution of energy in the preferences and technology affects the welfare cost. The larger the elasticity of substitution the smaller the welfare cost.
- Most of the welfare cost comes from the household consumption of energy.

CONCLUSIONS and FUTURE RESEARCH

- We find that energy price fluctuations lead to significant welfare losses.
- Notice that our model represents an economy without distortions or rigidities. Welfare losses may be even higher.
- Most of the cost comes from households' energy consumption.
- The ability of the economy to encourage energy substitution for both households and firms is crucial to reduce the cost of energy insecurity.